JP XVI (2011) ## JP XVI (2011) # JP XVI (2011) ### **Bakumondoto Extract** 麦門冬湯エキス Bakumondoto Extract contains not less than 1.2 mg of ginesenoside Rb₁ ($C_{54}H_{92}O_{23}$: 1109.29), and not less than 17 mg and not more than 51 mg of glycyrrhizic acid ($C_{42}H_{62}O_{16}$: 822.93), per extract prepared with the amount specified in the Method of preparation. #### Method of preparation | | 1) | |------------------|------| | Ophiopogon Tuber | 10 g | | Pinellia Tuber | 5 g | | Brown Rice | 5 g | | Jujube | 3 g | | Ginseng | 2 g | | Glycyrrhiza | 2 g | Prepare a dry extract or viscous extract as directed under Extracts, according to the prescription 1), using the crude drugs shown above. **Description** Bakumondoto Extract occurs as a light yellow to blackish brown, powder or viscous extract. It has a slight odor, and a sweet taste. **Identification** (1) Shake 2.0 g of dry extract (or 6.0 g of the viscous extract) with 10 mL of water, then add 5 mL of 1-butanol, shake, centrifuge, and use the water layer as the sample solution. Separately, to 3.0 g of ophiopogon tuber add 50 mL of water, and heat under a reflux condenser for 1 hour. After cooling, take 20 mL of the extract, add 5 mL of 1-butanol, shake, centrifuge, and use the water layer as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 2 μ L of the sample solution and 5 μ L of the standard solution as bands on the original line of a plate of silica gel for thinlayer chromatography. Develop the plate with a mixture of ethanol (99.5), water and acetic acid (100) (120:80:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4methoxybenzaldehyde-sulfuric acid TS on the plate, and heat at 105°C for 5 minutes: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the dark blue-green spot (Rf value: about 0.3) from the standard solution (Ophiopogon Tuber). (2) Shake 5.0 g of dry extract (or 15 g of the viscous extract) with 15 mL of water, then add 5 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of cycloartenyl ferulate for thin-layer chromatography in 1 mL of ethyl acetate, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 30 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thinlayer chromatography. Develop the plate with a mixture of hexane, acetone and acetic acid (100) (50:20:1) to a distance of about 10 cm, and air-dry the plate. When examine the plate under ultraviolet light (main wavelength: 365 nm), one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the bluish white fluorescent spot from the standard solution. Or when examine the plate under ultraviolet light (main wavelength: 365 nm) after spraying evenly a mixture of sulfuric acid and ethanol (99.5) (1:1) and heating at 105°C for 5 minutes, one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the yellow fluorescent spot from the standard solution (Brown Rice). (3) Shake 2.0 g of dry extract (or 6.0 g of the viscous extract) with 10 mL of sodium hydroxide TS, then add 5 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of Ginsenoside Rb₁ RS in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 2 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, 1-propanol, water and acetic acid (100) (7:5:4:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly vanillinsulfuric acid TS on the plate, heat at 105 °C for 5 minutes, and allow to cool: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the purple spot from the standard solution (Ginseng). (4) Shake 1.0 g of dry extract (or 3.0 g of the viscous extract) with 10 mL of water, then add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of liquiritin for thinlayer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, and heat at 105°C for 5 minutes: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Glycyrrhiza). - **Purity** (1) Heavy metals <1.07>—Prepare the test solution with 1.0 g of the dry extract (or an amount of the viscous extract, equivalent to 1.0 g of dried substance) as directed in Extracts (4), and perform the test (not more than 30 ppm). - (2) Arsenic <1.11>—Prepare the test solution with 0.67 g of the dry extract (or an amount of the viscous extract, equivalent to 0.67 g of dried substance) according to Method 3, and perform the test (not more than 3 ppm). **Loss on drying** $\langle 2.41 \rangle$ The dry extract: Not more than 7.0% (1 g, 105°C, 5 hours). The viscous extract: Not more than 66.7% (1 g, 105 °C, 5 hours). **Total ash** <5.01> Not more than 10.0%, calculated on the dried basis. Assay (1) Ginsenoside Rb₁—Weigh accurately about 2 g of the dry extract (or an amount of the viscous extract, equivalent to 2 g of dried substance), add 30 mL of diluted methanol (3 in 5), shake for 15 minutes, centrifuge, and separate the supernatant liquid. To the residue add 15 mL of diluted methanol (3 in 5), and repeat the same procedure. Combine all of the supernatant liquid, and add diluted methanol (3 in 5) to make exactly 50 mL. Pipet 10 mL of this solution, add 3 mL of sodium hydroxide TS, allow to stand for 30 minutes, then add 3 mL of 1 mol/L hydrochloric acid TS, and add water to make exactly 20 mL. Apply exactly 5 mL of this solution to a column [about 10 mm in inside diameter, packed with 0.36 g of octadecylsilanized silica gel for pre-treatment (55 – 105 μ m in particle size), and washed just before using with methanol and then diluted methanol (3 in 10)], and wash the column in sequence with 2 mL of diluted methanol (3 in 10), 1 mL of sodium carbonate TS and 10 mL of diluted methanol (3 in 10). Finally, elute with methanol to collect exactly 5 mL, and use this as the sample solution. Separately, weigh accurately about 10 mg of Ginsenoside Rb₁ RS (separately determine the water), and dissolve in methanol to make exactly 100 mL. Pipet 10 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 μ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of ginsenoside Rb₁ in each solution. Amount (mg) of ginsenoside Rb₁ (C₅₄H₉₂O₂₃) = $$M_S \times A_T/A_S \times 1/5$$ M_S : Amount (mg) of Ginsenoside Rb₁ RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 203 nm). Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with carbamoyl group bound silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 60°C. Mobile phase: A mixture of acetonitrile and water (4:1). Flow rate: 1.0 mL per minute (the retention time of ginsenoside Rb₁ is about 16 minutes). System suitability— System performance: When the procedure is run with 20 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of ginsenoside Rb₁ are not less than 5000 and not more than 1.5, respectively. System repeatability: When the test is repeated 6 times with $20 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ginsenoside Rb₁ is not more than 1.5%. (2) Glycyrrhizic acid—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solution. Amount (mg) of glycyrrhizic acid ($$C_{42}H_{62}O_{16}$$) = $M_S \times A_T/A_S \times 1/2$ M_S : Amount (mg) of Glycyrrhizic Acid RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 254 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 40°C. Mobile phase: A mixture of diluted acetic acid (31) (1 in 15) and acetonitrile (13:7). Flow rate: 1.0 mL per minute (the retention time of glycyrrhizic acid is about 12 minutes). System suitability— 1608 System performance: When the procedure is run with 10 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of glycyrrhizic acid are not less than 5000 and not more than 1.5%, respectively. System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glycyrrhizic acid is not more than 1.5%. Containers and storage Containers—Tight containers. JP XVI (2011)