JP XVI (2011) ## JP XVI (2011) JP XVI (2011) JP XVI (2011) ## Rikkunshito Extract 六君子湯エキス Rikkunshito Extract contains not less than 2.4 mg of ginsenoside Rb_1 ($C_{54}H_{92}O_{23}$: 1109.29), not less than 16 mg and not more than 48 mg of hesperidin, and not less than 8 mg and not more than 24 mg of glycyrrhizic acid ($C_{42}H_{62}O_{16}$: 822.93), per extract prepared with the amount specified in the Method of preparation. ## Method of preparation | | 1) | 2) | | |-----------------------------|-------|-------|--| | Ginseng | 4 g | 4 g | | | Atractylodes Rhizome | 4 g | _ | | | Atractylodes Lancea Rhizome | _ | 4 g | | | Poria Sclerotium | 4 g | 4 g | | | Pinellia Tuber | 4 g | 4 g | | | Citrus Unshiu Peel | 2 g | 2 g | | | Jujube | 2 g | 2 g | | | Glycyrrhiza | 1 g | 1 g | | | Ginger | 0.5 g | 0.5 g | | Prepare a dry extract or viscous extract as directed under Extracts, according to the prescription 1) or 2), using the crude drugs shown above. **Description** Rikkunshito Extract is a light brown to blackish brown, powder or viscous extract. It has an odor and a sweet and bitter taste. **Identification** (1) Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of sodium hydroxide TS, add 5 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of Ginsenoside Rb₁ RS in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 2 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, 1-propanol, water and acetic acid (100) (7:5:4:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly vanillin-sulfuric acid TS on the plate, heat at 105°C for 5 minutes, and allow to cool: one of the spot among the several spots from the sample solution has the same color tone and Rf value with the purple spot from the standard solution (2) (For preparation prescribed Atractylodes Rhizome) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, dissolve the residue in 2 mL of diethyl ether, and use this solution as the sample solution. Separately, dissolve 1 mg of atractylenolide III for thin-layer chromatography in 2 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat the plate at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the spot among the several spots from the sample solution has the same color tone and Rf value with the bluish white fluorescent spot from the standard solution (Atractylodes Rhizome). - (3) (For preparation prescribed Atractylodes Lancea Rhizome) Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of water, add 25 mL of hexane, and shake. Take the hexane layer, evaporate the layer under reduced pressure, dissolve the residue in 2 mL of hexane, and use this solution as the sample solution. Perform the test with this solution as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of hexane and acetone (7:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): a dark purple spot is observed at Rf value about 0.4, and this spot shows green-brown color after spraying 4dimethylaminobenzaldehyde TS for spraying, heating at 105°C for 5 minutes and allow to cool (Atractylodes Lancea Rhizome). - (4) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of hesperidin for thinlayer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 10 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, acetone, water and acetic acid (100) (10:6:3:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly 2,6-dibromo-N-chloro-1,4-benzoquinone monoimine TS on the plate, and allow to stand in an ammonia gas: one of the spot among the several spots from the sample solution has the same color tone and Rf value with the blue spot from the standard solution (Citrus Unshiu Peel). - (5) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of liquiritin for thinlayer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat the plate at 105°C for 5 minutes: one of the spot among the several spots from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Glycyrrhiza). - (6) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, dissolve the residue in 2 mL of diethyl ether, and use this solution as the sample solution. Separately, dissolve 1 mg of [6]-gingerol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 30 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4-dimethylaminobenzaldehyde TS for spraying on the plate, heat the plate at 105 °C for 5 minutes, and allow to cool: one of the spot among the several spots from the sample solution has the same color tone and Rf value with the blue-green spot from the standard solution (Ginger). - **Purity** (1) Heavy metals $\langle 1.07 \rangle$ —Prepare the test solution with 1.0 g of the dry extract (or an amount of the viscous extract, equivalent to 1.0 g of the dried substance) as directed under Extracts (4), and perform the test (not more than 30 ppm). - (2) Arsenic <1.11>—Prepare the test solution with 0.67 g of the dry extract (or an amount of the viscous extract, equivalent to 0.67 g of the dried substance) according to Method 3, and perform the test (not more than 3 ppm). **Loss on drying** <2.41> The dry extract—Not more than 10.0% (1 g, 105°C, 5 hours). The viscous extract—Not more than 66.7% (1 g, 105°C, 5 hours). **Total ash** $\langle 5.01 \rangle$ Not more than 9.0%, calculated on the dried basis. Assay (1) Ginsenoside Rb₁—Weigh accurately about 2 g of the dry extract (or an amount of the viscous extract, equivalent to 2 g of the dried substance), add 30 mL of diluted methanol (3 in 5), shake for 15 minutes, centrifuge, and separate the supernatant liquid. To the residue add 15 mL of diluted methanol (3 in 5), repeat the same procedure. Combine the supernatant liquids, add diluted methanol (3 in 5) to make exactly 50 mL. Pipet 10 mL of this solution, add 3 mL of sodium hydroxide TS, allow to stand for 30 minutes, then add 3 mL of 1 mol/L hydrochloric acid TS, and add water to make exactly 20 mL. Apply exactly 5 mL of this solution to a column (about 10 mm in inside diameter and packed with 0.36 g of octadecylsilanized silica gel for pre-treatment (55 – 105 μ m in particle size), washed just before use with methanol and then with diluted methanol (3 in 10)), and wash the column in sequence with 2 mL of diluted methanol (3 in 10), 1 mL of sodium carbonate TS and 10 mL of diluted methanol (3 in 10). Finally, elute with methanol to collect exactly 5 mL, and use this as the sample solution. Separately, weigh accurately about 10 mg of Ginsenoside Rb₁ RS (separately determine the water), and dissolve in methanol to make exactly 100 mL. Pipet 10 mL of this solution, add methanol to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly 20 µL each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of ginsenoside Rb₁ in each solution. > Amount (mg) of ginsenoside Rb₁ (C₅₄H₉₂O₂₃) = $W_S \times A_T/A_S \times 1/5$ M_S : Amount (mg) of Ginsenoside Rb₁ RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 203 nm). Column: A stainless steel column 4.6 mm in inside diameter and 25 cm in length, packed with carbamoyl groups bound silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 60°C. Mobile phase: A mixture of acetonitrile and water (4:1). Flow rate: 1.0 mL per minute (the retention time of ginsenoside Rb₁ is about 16 minutes). System suitability— System performance: When the procedure is run with 20 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of ginsenoside Rb₁ are not less than 5000 and not more than 1.5, respectively. System repeatability: When the test is repeated 6 times with $20\,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ginsenoside Rb₁ is not more than 1.5%. (2) Hesperidin—Weigh accurately about 0.1 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.1 g of the dried substance), add exactly 50 mL of diluted tetrahydrofuran (1 in 4), shake for 30 minutes, centrifuge, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 10 mg of hesperidin for assay, previously dried in a desiccator (silica gel) for more than 24 hours, dissolve in methanol to make exactly 100 mL. Pipet 10 mL of this solution, add diluted tetrahydrofuran (1 in 4) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, A_T and A_S , of hesperidin in each solution. Amount (mg) of hesperidin = $M_S \times A_T/A_S \times 1/20$ M_S : Amount (mg) of hesperidin for assay Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 285 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 40° C. Mobile phase: A mixture of water, acetonitrile and acetic acid (100) (82:18:1). Flow rate: $1.0\,\mathrm{mL}$ per minute (the retention time of hesperidin is about 15 minutes). System suitability— System performance: Dissolve 1 mg each of hesperidin for assay and naringin for thin-layer chromatography in diluted methanol (1 in 2) to make 100 mL. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, naringin and hesperidin are eluted in this order with the resolution between these peaks being not less than 1.5. System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of hesperidin is not more than 1.5%. (3) Glycyrrhizic acid—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solution. Amount (mg) of glycyrrhizic acid ($C_{42}H_{62}O_{16}$) = $M_S \times A_T/A_S \times 1/2$ M_S : Amount (mg) of Glycyrrhizic Acid RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 254 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter). Column temperature: A constant temperature of about 40°C. Mobile phase: A mixture of diluted acetic acid (31) (1 in 15) and acetonitrile (13:7). Flow rate: 1.0 mL per minute (the retention time of glycyrrhizic acid is about 12 minutes). System suitability— System performance: When the procedure is run with 10 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of glycyrrhizic acid are not less than 5000 and not more than 1.5, respectively. System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glycyrrhizic acid is not more than 1.5%. Containers and storage Containers—Tight containers.