Suppl I JP VXI (2012) ## Suppl I JP VXI (2012) # Suppl I JP VXI (2012) # Suppl I JP VXI (2012) #### Add the following: ### Hangeshashinto Extract 半夏瀉心湯エキス Hangeshashinto Extract contains not less than 70 mg and not more than 210 mg (for preparation prescribed 2.5 g of Scutellaria Root) or not less than 80 mg and not more than 240 mg (for preparation prescribed 3 g of Scutellaria Root) of baicalin ($C_{21}H_{18}O_{11}$: 446.36), not less than 22 mg and not more than 66 mg (for preparation prescribed 2.5 g of Glycyrrhiza) or not less than 25 mg and not more than 75 mg (for preparation prescribed 3 g of Glycyrrhiza) of glycyrrhizic acid ($C_{42}H_{62}O_{16}$: 822.93), and not less than 7 mg and not more than 21 mg of berberine [expressed as berberine chloride ($C_{20}H_{18}ClNO_4$: 371.81)], per extract prepared with the amount specified in the Method of preparation. #### Method of preparation | | 1) | 2) | 3) | |------------------|-------|-----|-------| | Pinellia Tuber | 5 g | 6 g | 5 g | | Scutellaria Root | 2.5 g | 3 g | 2.5 g | | Processed Ginger | 2.5 g | 3 g | _ | | Ginger | | _ | 2.5 g | | Ginseng | 2.5 g | 3 g | 2.5 g | | Glycyrrhiza | 2.5 g | 3 g | 2.5 g | | Jujube | 2.5 g | 3 g | 2.5 g | | Coptis Rhizome | 1 g | 1 g | 1 g | Prepare a dry extract or viscous extract as directed under Extracts, according to the prescription 1), 2) or 3), using the crude drugs shown above. **Description** Hangeshashinto Extract is a yellow-brown to blackish brown, powder or viscous extract. It has a slightly odor and a hotter, bitter and slightly sweet taste. **Identification** (1) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue. Separately, dissolve 1 mg of wogonin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thinlayer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (10:10:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly iron (III) chloride-methanol TS on the plate: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Scutellaria Root). - (2) For preparation prescribed Processed Ginger— Shake 1.0 g of dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of [6]-shogaol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 1 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of cyclohexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4dimethylaminobenzaldehyde TS for spraying on the plate, heat at 105°C for 5 minutes, and allow to cool: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the bluegreen spot from the standard solution (Processed Ginger). - (3) For preparation prescribed Ginger—Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of [6]-gingerol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thinlayer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4dimethylaminobenzaldehyde TS for spraying on the plate, heat at 105°C for 5 minutes, and allow to cool: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the bluegreen spot from the standard solution (Ginger). - (4) Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of sodium hydroxide TS, add 5 mL of 1buthanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of Ginsenoside Rg₁ RS in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μ L of the sample solution and 2 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, 1-propanol, water and acetic acid (100) (7:5:4:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly vanillin-sulfuric acid-ethanol TS for spraying on the plate, heat at 105°C for 5 minutes, and allow to cool: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the purple spot from the standard solution (Ginseng). - (5) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 5 mL of 1-buthanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of liquiritin for thinlayer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 2 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, and heat at 105°C for 5 minutes: one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the yellowbrown spot from the standard solution (Glycyrrhiza). - (6) Shake 0.5 g of the dry extract (or 1.5 g of the viscous extract) with 10 mL of methanol, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of coptisine chloride for thin-layer chromatography in 5 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μL each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ammonia solution (28) and methanol (15:1:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one of the spot among the several spots obtained from the sample solution has the same color tone and Rf value with the yellow fluorescent spot from the standard solution (Coptis Rhizome). - **Purity** (1) Heavy metals <1.07>—Prepare the test solution with 1.0 g of the dry extract (or an amount of the viscous extract, equivalent to 1.0 g of the dried substance) as directed under Extracts (4), and perform the test (not more than 30 ppm). - (2) Arsenic $\langle 1.11 \rangle$ —Prepare the test solution with 0.67 g of the dry extract (or an amount of the viscous extract, equivalent to 0.67 g of the dried substance) according to Method 3, and perform the test (not more than 3 ppm). **Loss on drying** $\langle 2.41 \rangle$ The dry extract—Not more than 9.5% (1 g, 105°C, 5 hours). The viscous extract—Not more than 66.7% (1 g, 105° C, 5 hours). **Total ash** $\langle 5.01 \rangle$ Not more than 10.0%, calculated on the dried basis. Assay (1) Baicalin—Weigh accurately about 0.1 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.1 g of the dried substance), add exactly 50 mL of diluted methanol (7 in 10), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Baicalin RS (separately determine the water), and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add diluted methanol (7 in 10) to make exactly 10 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of baicalin in each solution. Amount (mg) of baicalin ($$C_{21}H_{18}O_{11}$$) = $M_S \times A_T/A_S \times 1/4$ M_S : Amount (mg) of Baicalin RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 277 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 40°C. Mobile phase: A mixture of diluted phosphoric acid (1 in 200) and acetonitrile (19:6). Flow rate: 1.0 mL per minute (the retention time of baicalin is about 10 minutes). System suitability— System performance: When the procedure is run with $10 \mu L$ of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of baicalin are not less than 5000 and not more than 1.5, respectively. System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of baicalin is not more than 1.5%. (2) Glycyrrhizic acid—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10\,\mu\text{L}$ each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of glycyrrhizic acid in each solution. Amount (mg) of glycyrrhizic acid ($$C_{42}H_{62}O_{16}$$) = $M_S \times A_T/A_S \times 1/2$ M_S : Amount (mg) of Glycyrrhizic Acid RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 254 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 40° C. Mobile phase: A mixture of diluted acetic acid (31) (1 in 15) and acetonitrile (13:7). Flow rate: 1.0 mL per minute (the retention time of glycyrrhizic acid is about 12 minutes). System suitability- System performance: When the procedure is run with $10 \mu L$ of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of glycyrrhizic acid are not less than 5000 and not more than 1.5, respectively. System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glycyrrhizic acid is not more than 1.5%. (3) Berberine—Weigh accurately about 0.2 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.2 g of the dried substance), add exactly 50 mL of the mobile phase, shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Berberine Chloride RS (separately determine the water $\langle 2.48 \rangle$ in the same manner as Berberine Chloride Hydrate), dissolve in the mobile phase to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, A_T and A_S , of berberine in each solution. Amount (mg) of berberine chloride ($$C_{20}H_{18}CINO_4$$) = $M_S \times A_T/A_S \times 1/2$ M_S : Amount (mg) of Berberine Chloride RS, calculated on the anhydrous basis Operating conditions— Detector: An ultraviolet absorption photometer (wavelength: 345 nm). Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter). Column temperature: A constant temperature of about 30° C. Mobile phase: Dissolve 3.4 g of potassium dihydrogen phosphate and 1.7 g of sodium lauryl sulfate in 1000 mL of a mixture of water and acetonitrile (1:1). Flow rate: 1.0 mL per minute (the retention time of berberine is about 8 minutes). System suitability- System performance: Dissolve 1 mg each of Berberine Chloride RS and palmatine chloride in the mobile phase to make 10 mL. When the procedure is run with $10 \,\mu\text{L}$ of this solution under the above operating conditions, palmatine and berberine are eluted in this order with the resolution between these peaks being not less than 1.5. System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of berberine is not more than 1.5%. Containers and storage Containers—Tight containers. Suppl I JP VXI (2012) Suppl I JP VXI (2012)