JP XVII (2016)

Tokishakuyakusan Extract

当帰芍薬散エキス

Tokishakuyakusan Extract contains not less than 0.6 mg and not more than 2.4 mg of (*E*)-ferulic acid, not less than 34 mg and not more than 102 mg (for preparation prescribed 4 g of Peony Root) or not less than 51 mg and not more than153 mg (for preparation prescribed 6 g of Peony Root) of paeoniflorin ($C_{23}H_{28}O_{11}$: 480.46), and not less than 0.4 mg of atractylenolide III (for preparation prescribed Atractylodes Rhizome) or not less than 0.1 mg of atractylodin (for preparation prescribed Atractylodes Lancea Rhizome), per extract prepared with the amount specified in the Method of preparation.

Method of preparation

	1)	2)	3)	4)
Japanese Angelica Root	3 g	3 g	3 g	3 g
Cnidium Rhizome	3 g	3 g	3 g	3 g
Peony Root	6 g	6 g	4 g	4 g
Poria Sclerotium	4 g	4 g	4 g	4 g
Atractylodes Rhizome	4 g	4 g	4 g	—
Atractylodes Lancea Rhizome	—	—	—	4 g
Alisma Tuber	4 g	5 g	4 g	4 g

Prepare a dry extract or viscous extract as directed under Extracts, according to the preparation 1) to 4), using the crude drugs shown above.

Description Tokishakuyakusan Extract is a light brown to brown powder or blackish brown viscous extract. It has a characteristic odor, and a slight sweet taste at first and a bitter taste later. **Identification** (1) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 15 mL of water and 5 mL of 0.1 mol/L hydrochloric acid TS, then add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of (Z)-ligustilide for thin-layer chromatography in 10 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot $10\,\mu$ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one of the spot among the several spots from the sample solution has the same color tone and Rf value with the bluish white fluorescent spot from the standard solution (Japanese Angelica Root; Cnidium Rhizome).

(2) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of Paeoniflorin RS or paeoniflorin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thinlayer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography, develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid TS on the plate, and heat at 105°C for 5 minutes: one of the spot among the several spots from the sample solution has the same color tone and Rfvalue with the purple spot from the standard solution (Peony Root).

(3) For preparation prescribed Atractylodes Rhizome-Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, shake, and take the diethyl ether layer. Evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of atractylenolide III for thin-layer chromatography in 2 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 10 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the spot among the several spots from the sample solution has the same color tone and Rf value with the bluish white fluorescent spot from the standard solution (Atractylodes Rhizome).

(4) For preparation prescribed Atractylodes Lancea Rhizome—Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of water, add 25 mL of hexane, and shake. Take the hexane layer, add anhydrous sodium sulfate to dry, and filter. Evaporate the filtrate under reduced pressure, add 0.5 mL of hexane to the residue, and use this solution as the sample solution. Perform the test with the sample solution as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography, develop the plate with a mixture of hexane and acetone (7:1) to a distance of about 10 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 254 nm): a dark purple spot observed at an Rf value of about 0.4. The spot shows greenish brown color after spraying evenly 4-dimethylaminobenzaldehyde TS for spraying, heating at 105°C for 5 minutes and allowing to cool (Atractylodes Lancea Rhizome).

(5) Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of sodium carbonate TS, add 25 mL of diethyl ether, and shake. Take the diethyl ether layer, evaporate the layer under reduced pressure, add 1 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of alisol A for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (10:10:3) to a distance of about 10 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid-acetic acid TS on the plate, heat at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the spot among the several spots from the sample solution has the same color tone and Rfvalue with the yellowish fluorescent spot from the standard solution (Alisma Tuber).

Purity (1) Heavy metals $\langle 1.07 \rangle$ —Prepare the test solution with 1.0 g of the dry extract (or an amount of the viscous extract, equivalent to 1.0 g of the dried substance) as directed under Extracts (4), and perform the test (not more than 30 ppm).

(2) Arsenic $\langle 1.11 \rangle$ —Prepare the test solution with 0.67 g of the dry extract (or an amount of the viscous extract, equivalent to 0.67 g of the dried substance) according to Method 3, and perform the test (not more than 3 ppm).

Loss on drying $\langle 2.41 \rangle$ The dry extract: Not more than 9.5% (1 g, 105°C, 5 hours).

The viscous extract: Not more than 66.7% (1 g, 105° C, 5 hours).

Total ash $\langle 5.01 \rangle$ Not more than 10.0%, calculated on the dried basis.

Assay (1) (E)-Ferulic acid—Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of (E)ferulic acid for assay, previously dried in a desiccator (silica gel) for not less than 24 hours, and dissolve in diluted methanol (1 in 2) to make exactly 100 mL. Pipet 2 mL of this solution, add diluted methanol (1 in 2) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu L$ each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of (E)-ferulic acid in each solution.

Amount (mg) of (E)-ferulic acid = $M_{\rm S} \times A_{\rm T}/A_{\rm S} \times 1/50$

 $M_{\rm S}$: Amount (mg) of (E)-ferulic acid for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-

length: 320 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about $40^{\circ}C$.

Mobile phase: Dissolve 7.8 g of sodium dihydrogen phosphate in 1000 mL of water, and add 2 mL of phosphoric acid. To 850 mL of this solution add 150 mL of acetonitrile.

Flow rate: 1.0 mL per minute (the retention time of (*E*)-ferulic acid is about 10 minutes).

System suitability-

System performance: When the procedure is run with 10 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of (*E*)-ferulic acid are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of (*E*)-ferulic acid is not more than 1.5%.

(2) Paeoniflorin—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Paeoniflorin RS (separately determine the water $\langle 2.48 \rangle$ by coulometric titration, using 10 mg), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of paeoniflorin in each solution.

Amount (mg) of paeoniflorin (C₂₃H₂₈O₁₁)
=
$$M_{\rm S} \times A_{\rm T}/A_{\rm S} \times 1/2$$

 $M_{\rm S}$: Amount (mg) of Paeoniflorin RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 232 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 20°C.

Mobile phase: A mixture of water, acetonitrile and phosphoric acid (850:150:1).

Flow rate: 1.0 mL per minute (the retention time of paeoniflorin is about 9 minutes).

System suitability—

System performance: Dissolve 1 mg of albiflorin in 10 mL of the standard solution. When the procedure is run with 10 μ L of this solution under the above operating conditions, albiflorin and paeoniflorin are eluted in this order with the resolution between these peaks being not less than 2.5.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of paeoniflorin is not more than 1.5%.

(3) Atractylenolide III—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh

accurately about 10 mg of atractylenolide III for assay, previously dried in a desiccator (silica gel) for more than 24 hours, and dissolve in methanol to make exactly 100 mL. Pipet 5 mL of this solution, add diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10 μ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of atractylenolide III in each solution.

> Amount (mg) of atractylenolide III = $M_{\rm S} \times A_{\rm T}/A_{\rm S} \times 1/40$

 $M_{\rm S}$: Amount (mg) of atractylenolide III for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: A mixture of water, acetonitrile and phosphoric acid (550:450:1).

Flow rate: 1.0 mL per minute (the retention time of atractylenolide III is about 10 minutes).

System suitability-

System performance: When the procedure is run with 10 μ L of the standard solution under the above operating conditions, the number of theoretical plates and the symmetry factor of the peak of atractylenolide III are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of atractylenolide III is not more than 1.5%.

(4) Atractylodin—Conduct this procedure without exposure to light, using light-resistant vessels. Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of methanol, shake for 15 minutes, filter, and use the filtrate as the sample solution. Perform the test with exactly 10 μ L each of the sample solution and atractylodin TS for assay as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, $A_{\rm T}$ and $A_{\rm S}$, of atractylodin in each solution.

Amount (mg) of atractylodin = $C_{\rm S} \times A_{\rm T}/A_{\rm S} \times 50$

 $C_{\rm S}$: Concentration (mg/mL) of atractylodin in atractylodin TS for assay

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 340 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40°C.

Mobile phase: To 330 mL of a mixture of water and phosphoric acid (55:1) add 670 mL of acetonitrile.

Flow rate: 1.0 mL per minute (the retention time of atractylodin is about 13 minutes).

System suitability-

System performance: When the procedure is run with 10 μ L of atractylodin TS for assay under the above operating

conditions, the number of theoretical plates and the symmetry factor of the peak of atractylodin are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of atractylodin TS for assay under the above operating conditions, the relative standard deviation of the peak area of atractylodin is not more than 1.5%.

Containers and storage Containers—Tight containers.

JP XVII (2016)

JP XVII (2016)

