Suppl I, JP XVII (2017) Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017) Suppl I, JP XVII (2017)

Hachimijiogan Extract

八味地黄丸エキス

Change the Identification (1), (3) to (6) as follows:

Identification (1) To 1.0 g of the dry extract (or 3.0 g of the viscous extract), add 10 mL of water, shake, then add 30 mL of methanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Perform the test with the sample solution as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L of the sample solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of water, methanol and 1-butanol (1:1:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid TS on the plate, heat the plate at 105 °C for 5 minutes, and allow to cool; a dark green spot is observed at an Rf value of about 0.6 (Rehmannia Root).

Suppl I, JP XVII (2017)

- (3) To 2.0 g of the dry extract (or 6.0 g of the viscous extract), add 10 mL of sodium carbonate TS, shake, then add 10 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of alisol A for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and $2 \mu L$ of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (10:10:3) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid-acetic acid TS on the plate, heat the plate at 105°C for 5 minutes, allow to cool, and examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow fluorescent spot from the standard solution (Alisma Tuber).
- (4) To 2.0 g of the dry extract (or 6.0 g of the viscous extract), add 10 mL of water, shake, then add 5 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of paeonol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and $2 \mu L$ of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane and diethyl ether (5:3) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid TS on the plate, and heat the plate at 105°C for 5 minutes: one of the several spots obtained from the sample solution has the same color tone and Rf value with the orange spot from the standard solution (Moutan Bark).
- (5) Perform the test according to the following i) or ii) (Cinnamon Bark).
- i) Put 10 g of the dry extract (or 30 g of the viscous extract) in a 300-mL hard-glass flask, add 100 mL of water and 1 mL of silicone resin, connect an apparatus for essential oil determination, and heat to boil under a reflux condenser. The graduated tube of the apparatus is to be previously filled with water to the standard line, and 2 mL of hexane is added to the graduated tube. After heating under reflux for 1 hour, separate 1 mL of the hexane layer, add 0.5 mL of sodium hydroxide TS, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of (E)-cinnamaldehyde for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 50 μL of the sample solution and $2 \mu L$ of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane, diethyl ether and methanol (15:5:1) to a distance of about 7 cm, and airdry the plate. Spray evenly 2,4-dinitrophenylhydrazine TS on the plate: one of the several spots obtained from the

sample solution has the same color tone and Rf value with the yellow-orange spot from the standard solution.

- ii) To 2.0 g of the dry extract (or 6.0 g of the viscous extract), add 10 mL of water, shake, then add 5 mL of hexane, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of (E)-2methoxycinnamaldehyde for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 20 μL of the sample solution and $2 \mu L$ of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-white fluorescent spot from the standard solution.
- (6) To 3.0 g of the dry extract (or 9.0 g of the viscous extract), add 20 mL of diethyl ether and 2 mL of ammonia TS, shake for 10 minutes, centrifuge, and evaporate the supernatant liquid under reduced pressure. Add 1 mL of acetonitrile to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of benzoylmesaconine hydrochloride for thin-layer chromatography in 10 mL of ethanol (99.5), and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 10 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of 1-butanol, water and acetic acid (100) (4:2:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly Dragendorff's TS for spraying on the plate, and air-dry the plate. Then spray evenly sodium nitrite TS on the plate: one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Processed Aconite Root or Powdered Processed Aconite Root).

Change the Assay (1) as follows:

Assay (1) Loganin—Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of loganin for assay, dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \,\mu$ L each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of loganin in each solution.

Amount (mg) of loganin = $M_S \times A_T/A_S \times 1/2$

 $M_{\rm S}$: Amount (mg) of loganin for assay taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wave-

length: 238 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 50°C.

Mobile phase: A mixture of water, acetonitrile and methanol (55:4:1).

Flow rate: 1.2 mL per minute (the retention time of loganin is about 25 minutes).

System suitability-

System performance: When the procedure is run with $10 \mu L$ of the standard solution under the above operating conditions, the number of theoretical plates and symmetry factor of the peak of loganin are not less than 5000 and not more than 1.5, respectively.

System repeatability: When the test is repeated 6 times with $10 \,\mu\text{L}$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of loganin is not more than 1.5%.

Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017) Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017) Suppl I, JP XVII (2017)