Suppl I, JP XVII (2017)

Orengedokuto Extract

黄連解毒湯エキス

Change the Identification as follows:

Identification (1) Shake 0.5 g of the dry extract (or 1.5 g of the viscous extract) with 10 mL of methanol, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of coptisine chloride for thin-layer chromatography in 5 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, ammonia solution (28) and methanol (15:1:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow fluorescent spot from the standard solution (Coptis Rhizome).

(2) Shake 0.5 g of the dry extract (or 1.5 g of the viscous extract) with 5 mL of water, then add 25 mL of ethyl acetate, and shake. Separate the ethyl acetate layer, evaporate the solvent under reduced pressure, add 1 mL of methanol to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of limonin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 10 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (5:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly vanillin-sulfuric acid-ethanol TS for spraying on the plate, heat the plate at 105°C for 5 minutes, and allow to cool: one of the several spots obtained from the sample solution has the same color tone and Rf value with the purple spot from the standard solution (Phellodendron Bark).

- (3) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, then add 10 mL of diethyl ether, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of wogonin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thinlayer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (10:10:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly iron (III) chloride-methanol TS on the plate: one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Scutellaria Root).
- (4) Shake 0.5 g of the dry extract (or 1.5 g of the viscous extract) with 10 mL of methanol, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of geniposide for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid TS on the plate, and heat the plate at 105°C for 5 minutes: one of the several spots obtained from the sample solution has the same color tone and Rf value with the dark purple spot from the standard solution (Gardenia Fruit).

Suppl I, JP XVII (2017)