Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017)

Shoseiryuto Extract

小青竜湯エキス

Change the Origin/limits of content, Identification (2)-(8) and Assay (1), (3) as follows:

Shoseiryuto Extract contains not less than 8 mg and not more than 24 mg of the total alkaloids [ephedrine ($C_{10}H_{15}NO$: 165.23) and pseudoephedrine ($C_{10}H_{15}NO$: 165.23)], not less than 26 mg and not more than 78 mg of paeoniflorin ($C_{23}H_{28}O_{11}$: 480.46), and not less than 14 mg and not more than 42 mg of glycyrrhizic acid ($C_{42}H_{62}O_{16}$: 822.93), per extract prepared with the amount specified in the Method of preparation.

Identification

(2) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of Paeoniflorin RS or paeoniflorin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 5 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-methoxybenzaldehyde-sulfuric acid TS on the plate, and heat the plate at 105°C for 5 minutes: one of the several spots obtained from the sample solution has the same color tone and Rf value with the purple spot from the standard solution (Peony Root).

(3) For preparation prescribed Processed Ginger—Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of [6]-shogaol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 1 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. De-

velop the plate with a mixture of cyclohexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4-dimethylaminobenzaldehyde TS for spraying on the plate, heat the plate at 105°C for 5 minutes, allow to cool, and spray water: one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-green to grayish green spot from the standard solution (Processed Ginger).

- (4) For preparation prescribed Ginger—Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of [6]-gingerol for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate and hexane (1:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 4dimethylaminobenzaldehyde TS for spraying on the plate, heat the plate at 105°C for 5 minutes, allow to cool, and spray water: one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-green to grayish green spot from the standard solution (Ginger).
- (5) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, add 10 mL of 1-butanol, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of liquiritin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 1 μ L each of the sample solution and standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, methanol and water (20:3:2) to a distance of about 7 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, heat the plate at 105°C for 5 minutes, and examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-green fluorescent spot from the standard solution (Glycyrrhiza).
- (6) Perform the test according to the following i) or ii) (Cinnamon Bark).
- i) Put 10 g of the dry extract (or 30 g of the viscous extract) in a 300-mL hard-glass flask, add 100 mL of water and 1 mL of silicone resin, connect the apparatus for essential oil determination, and heat to boil under a reflux condenser. The graduated tube of the apparatus is to be previously filled with water to the standard line, and 2 mL of hexane is added to the graduated tube. After heating under reflux for 1 hour, separate the hexane layer, and use the layer as the sample solution. Separately, dissolve 1 mg of (E)-cinnamaldehyde for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution.

Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and 2 μ L the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly 2,4-dinitrophenylhydrazine TS on the plate: one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-orange spot from the standard solution.

- ii) Shake 2.0 g of the dry extract (or 6.0 g of the viscous extract) with 10 mL of water, then add 5 mL of hexane, shake, centrifuge, and use the supernatant liquid as the sample solution. Separately, dissolve 1 mg of (E)-2-methoxycinnamaldehyde for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 20 μ L of the sample solution and $2 \mu L$ the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Examine under ultraviolet light (main wavelength: 365 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the blue-white fluorescent spot from the standard solution.
- (7) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of water, then add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of asarinin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography <2.03>. Spot 20 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel for thin-layer chromatography. Develop the plate with a mixture of hexane and ethyl acetate (2:1) to a distance of about 7 cm, and air-dry the plate. Spray evenly dilute sulfuric acid on the plate, and heat the plate at 105°C for 5 minutes: one of the several spots obtained from the sample solution has the same color tone and Rf value with the yellow-brown spot from the standard solution (Asiasarum Root).
- (8) Shake 1.0 g of the dry extract (or 3.0 g of the viscous extract) with 10 mL of sodium hydroxide TS, then add 25 mL of diethyl ether, and shake. Separate the diethyl ether layer, evaporate the layer under reduced pressure, add 2 mL of diethyl ether to the residue, and use this solution as the sample solution. Separately, dissolve 1 mg of schisandrin for thin-layer chromatography in 1 mL of methanol, and use this solution as the standard solution. Perform the test with these solutions as directed under Thin-layer Chromatography $\langle 2.03 \rangle$. Spot 10 μ L of the sample solution and 5 μ L of the standard solution on a plate of silica gel with fluorescent indicator for thin-layer chromatography. Develop the plate with a mixture of ethyl acetate, hexane and acetic acid (100) (10:10:1) to a distance of about 7 cm, and air-dry

the plate. Examine under ultraviolet light (main wavelength: 254 nm): one of the several spots obtained from the sample solution has the same color tone and Rf value with the bluepurple spot from the standard solution (Schisandra Fruit).

Assay

(1) Total alkaloids (ephedrine and pseudoephedrine)— Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of dried substance), add 20 mL of diethyl ether, shake, then add 3.0 mL of 0.1 mol/L hydrochloric acid TS, and shake for 10 minutes. After centrifugation, remove the upper layer, add 20 mL of diethyl ether, proceed in the same manner as described above, and remove the upper layer. To the aqueous layer add 1.0 mL of ammonia TS and 20 mL of diethyl ether, shake for 30 minutes, centrifuge, and separate the supernatant liquid. In addition, repeat twice in the same manner for the aqueous layer using 1.0 mL of ammonia TS and 20 mL of diethyl ether. Combine all the supernatant liquids, evaporate the solvent under reduced pressure, dissolve the residue in diluted methanol (1 in 2) to make exactly 50 mL. Centrifuge this solution, and use the supernatant liquid as the sample solution. Separately, weigh accurately about 10 mg of ephedrine hydrochloride for assay of crude drugs, previously dried at 105°C for 3 hours, and dissolve in diluted methanol (1 in 2) to make exactly 100 mL. Pipet 10 mL of this solution, add diluted methanol (1 in 2) to make exactly 50 mL, and use this solution as the standard solution. Perform the test with exactly $10 \mu L$ each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_{TE} and A_{TP} , of ephedrine and pseudoephedrine obtained from the sample solution, and the peak area, $A_{\rm S}$, of ephedrine from the standard

Amount (mg) of total alkaloids [ephedrine ($C_{10}H_{15}NO$) and pseudoephedrine ($C_{10}H_{15}NO$)]

$$= M_{\rm S} \times (A_{\rm TE} + A_{\rm TP})/A_{\rm S} \times 1/10 \times 0.819$$

M_S: Amount (mg) of ephedrine hydrochloride for assay of crude drugs taken

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 210 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter).

Column temperature: A constant temperature of about 40°C .

Mobile phase: To 5 g of sodium lauryl sulfate add 350 mL of acetonitrile, shake, and add 650 mL of water and 1 mL of phosphoric acid to dissolve lauryl sulfate.

Flow rate: 1.0 mL per minute (the retention time of ephedrine is about 27 minutes).

System suitability—

System performance: Dissolve 1 mg each of ephedrine hydrochloride for assay of crude drugs and pseudoephedrine

hydrochloride in diluted methanol (1 in 2) to make 10 mL. When the procedure is run with $10 \mu L$ of this solution under the above operating conditions, pseudoephedrine and ephedrine are eluted in this order with the resolution between these peaks being not less than 1.5.

System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of ephedrine is not more than 1.5%.

- (3) Glycyrrhizic acid—Perform the test according to the following i) or ii).
- i) Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add exactly 50 mL of diluted methanol (1 in 2), shake for 15 minutes, filter, and use the filtrate as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS, (separately determine the water $\langle 2.48 \rangle$ by coulometric titration, using 10 mg), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly 10μ L each of the sample solution and standard solution as directed under Liquid Chromatography $\langle 2.01 \rangle$ according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solution.

Amount (mg) of glycyrrhizic acid (
$$C_{42}H_{62}O_{16}$$
)
= $M_S \times A_T/A_S \times 1/2$

 M_S : Amount (mg) of Glycyrrhizic Acid RS taken, calculated on the anhydrous basis

Operating conditions—

Detector: An ultraviolet absorption photometer (wavelength: 254 nm).

Column: A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 μ m in particle diameter)

Column temperature: A constant temperature of about 40 °C.

Mobile phase: Dissolve 3.85 g of ammonium acetate in 720 mL of water, and add 5 mL of acetic acid (100) and 280 mL of acetonitrile.

Flow rate: 1.0 mL per minute (the retention time of glycyrrhizic acid is about 15 minutes).

System suitability—

System performance: Dissolve 5 mg of monoammonium glycyrrhizinate for resolution check in 20 mL of dilute ethanol. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.9 to glycyrrhizic acid and the peak of glycyrrhizic acid is not less than 1.5. Dissolve 1 mg of (E)-cinnamaldehyde for thin-layer chromatography in 50 mL of methanol. To 2 mL of this solution add 2 mL of the standard solution. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peaks of glycyrrhizic acid and (E)-cinnamaldehyde is not less than 1.5.

System repeatability: When the test is repeated 6 times with $10 \mu L$ of the standard solution under the above operating conditions, the relative standard deviation of the peak area of glycyrrhizic acid is not more than 1.5%.

ii) Weigh accurately about 0.5 g of the dry extract (or an amount of the viscous extract, equivalent to about 0.5 g of the dried substance), add 20 mL of diethyl ether and 10 mL of water, and shake for 10 minutes. After centrifugation, remove the upper layer, add 20 mL of diethyl ether, proceed in the same manner as described above, and remove the upper layer. To the resultant aqueous layer add 10 mL of methanol, shake for 30 minutes, centrifuge, and take the supernatant liquid. To the residue add 20 mL of diluted methanol (1 in 2), shake for 5 minutes, centrifuge, and take the supernatant liquid. Combine these supernatant liquids, add diluted methanol (1 in 2) to make exactly 50 mL, and use this solution as the sample solution. Separately, weigh accurately about 10 mg of Glycyrrhizic Acid RS (separately determine the water <2.48> by coulometric titration, using 10 mg), dissolve in diluted methanol (1 in 2) to make exactly 100 mL, and use this solution as the standard solution. Perform the test with exactly $10 \mu L$ each of the sample solution and standard solution as directed under Liquid Chromatography <2.01> according to the following conditions, and determine the peak areas, A_T and A_S , of glycyrrhizic acid in each solution.

> Amount (mg) of glycyrrhizic acid ($C_{42}H_{62}O_{16}$) = $M_S \times A_T/A_S \times 1/2$

 M_S : Amount (mg) of Glycyrrhizic Acid RS taken, calculated on the anhydrous basis

Operating conditions—

Proceed as directed in the operating conditions in i). System suitability—

System repeatability: Proceed as directed in the system suitability in i).

System performance: Dissolve 5 mg of monoammonium glycyrrhizinate for resolution check in 20 mL of dilute ethanol. When the procedure is run with $10\,\mu\text{L}$ of this solution under the above operating conditions, the resolution between the peak having the relative retention time of about 0.9 to glycyrrhizic acid and the peak of glycyrrhizic acid is not less than 1.5.

Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017)

Suppl I, JP XVII (2017)